Skip to main content

Fused Filament Fabrication of Ceramic Components for Home Use

Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Ceramic materials offer a variety of desirable material properties, but due to being particularly hard and brittle, are challenging to machine in subtractive processes. Additive manufacturing of ceramics parts requires costly machines and raw materials, limiting the use of additively produced ceramic parts to the professional realm. Fused Filament Fabrication (FFF) has become a widespread additive manufacturing technology, due to low cost of machines and materials (typically polylactic acid (PLA) and ABS)). This paper addresses the suitability of the FFF process to manufacture ceramics parts cost-effectively.

There are many “effect” filaments for FFF use, e.g. with metallic powder content (glitter effect), wood powder (biobased raw materials) or inorganic filler (stone effect). The purpose of this research is to study FFF-derived ceramic parts, which do not only contain a certain fraction of inorganic particles in a polymer matrix, but which have been debindered and sintered to yield “true” ceramic parts comparable to those from a conventional ceramics manufacturing process.

The experiments have focused on FFF-printing available filaments, debindering (using solvents and heat) and sintering (using heat). Commercially available ceramic filaments were identified, all of them having a polymer matrix. For comparison, industrial grade machines for all common additive manufacturing processes for ceramics are listed, with prices that partly exceed € 250,000. During the practical experiments, the filament, containing 60% by volume of zirconium silicate, was successfully printed. The printed specimens were subsequently debindered and sintered with success, but the formation of pockets of trapped air could not be avoided completely during the debindering process. This paper shows that basically, FFF-made ceramic components. Semi-professional “makers” can use ceramic filaments on FFF printers, and apply post-processing in the steps of debindering (chemically with solvents or thermally) and final sintering to obtain parts.

Keywords

  • Ceramic materials
  • Fused Filament Fabrication (FFF)
  • Debindering
  • Cost-effectively

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   30.19
Price includes VAT (Lithuania)
  • DOI: 10.1007/978-3-030-62784-3_11
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
EUR   245.03
Price includes VAT (Lithuania)
  • ISBN: 978-3-030-62784-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
EUR   320.99
Price includes VAT (Lithuania)
Hardcover Book
EUR   320.99
Price includes VAT (Lithuania)
Fig. 1.

References

  1. Weller, C., Kleer, R., Piller, F.T.: Economic implications of 3D printing: market structure models in light of additive manufacturing revisited. Int. J. Prod. Econ. 164, 43–56 (2015). https://doi-org.libproxy.viko.lt/10.1016/j.ijpe.2015.02.020

    CrossRef  Google Scholar 

  2. Mathias, D., Snider, C., Hicks, B., Ranscombe, C.: Accelerating product prototyping through hybrid methods: coupling 3D printing and LEGO. Des. Stud. 62, 68–99 (2019). https://doi-org.libproxy.viko.lt/10.1016/j.destud.2019.04.003

    CrossRef  Google Scholar 

  3. Wang, X., Jiang, M., Zhou, Z., Gou, J., Hui, D.: 3D printing of polymer matrix composites: a review and prospective. Compos. Part B Eng. 110, 442–458 (2017). https://doi-org.libproxy.viko.lt/10.1016/j.compositesb.2016.11.034

    CrossRef  Google Scholar 

  4. Schirmeister, C.G., Hees, T., Licht, E.H., Mülhaupt, R.: 3D printing of high density polyethylene by fused filament fabrication. Addit. Manuf. 28, 152–159 (2019). https://doi-org.libproxy.viko.lt/10.1016/j.addma.2019.05.003

    CrossRef  Google Scholar 

  5. Koch, C., Van Hulle, L., Rudolph, N.: Investigation of mechanical anisotropy of the fused filament fabrication process via customized tool path generation. Addit. Manuf. 16, 138–145 (2017). https://doi-org.libproxy.viko.lt/10.1016/j.addma.2017.06.003

    CrossRef  Google Scholar 

  6. Thompson, Y., Gonzalez-Gutierrez, J., Kukla, C., Felfer, P.: Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel. Addit. Manuf. 30, 100861 (2019). https://doi-org.libproxy.viko.lt/10.1016/j.addma.2019.100861

  7. Hensen, T.J.: Additive manufacturing of ceramic nanopowder by direct coagulation printing. Addit. Manuf. 23, 140–150 (2018). https://doi-org.libproxy.viko.lt/10.1016/j.addma.2018.07.010

  8. Deckers, J.: Additive manufacturing of ceramics: a review. J. Ceram. Sci. Tech. 04 (2014). https://doi-org.libproxy.viko.lt/10.4416/jcst2014-00032

  9. Agarwala, M.K., Weeren, R.V., Bandyopadhyay, A., Safari, A., Danforth, S.C.: Filament feed materials for fused deposition processing of ceramics and metals. Int. Solid Free. Fabr. Symp., 8 (1996). http://hdl.handle.net/2152/70277

  10. Chen, Z.: 3D printing of ceramics: a review. J. Eur. Ceram. Soc., 399(4), 661–687 (2019). https://doi-org.libproxy.viko.lt/10.1016/j.jeurceramsoc.2018.11.013

  11. Cano, S.: Additive manufacturing of zirconia parts by fused filament fabrication and solvent debinding: selection of binder formulation. Addit. Manuf. 26, 117–128 (2019). https://doi-org.libproxy.viko.lt/10.1016/j.addma.2019.01.001

  12. Amaco White 25-D Ceramic Clay FilametTM. The Virtual Foundry. https://shop.thevirtualfoundry.com/products/amaco-white-25-d-ceramic-clay-filamet. Accessed 26 Jan 2020

  13. Amaco X-23 Ceramic Clay FilametTM: The Virtual Foundry. https://shop.thevirtualfoundry.com/products/amaco-x-23-ceramic-clay-filamet. Accessed 26 Jan 2020)

  14. LAYCeramic Ceramic Filament - 3.00 mm (1 kg). MatterHackers. https://www.matterhackers.com/store/3d-printer-filament/layceramic-3.00mm. Accessed 26 Jan 2020

  15. New Ceramic 3d Printing Filament 1.75 mm Ceramic Texture Impressora 3d Plastic Filament (1 kg). https://www.alibaba.com/product-detail/New-Ceramic-3d-printing-filament-1_60736064964.html. Accessed 26 Jan 2020

  16. Abel, J.: Fused Filament Fabrication (FFF) of Metal-Ceramic Components. J. Vis. Exp. 143, 57693 (2019). https://doi-org.libproxy.viko.lt/10.3791/57693

  17. Gonzalez-Gutierrez, J., Cano, S., Schuschnigg, S., Kukla, C., Sapkota, J., Holzer, C.: Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: a review and future perspectives. Materials 11(5), 840 (2018). https://doi-org.libproxy.viko.lt/10.3390/ma11050840

  18. Gorjan, L., Tonello, R., Sebastian, T., Colombo, P., Clemens, F.: Fused deposition modeling of mullite structures from a preceramic polymer and γ-alumina. J. Eur. Ceram. Soc. 39(7), 2463–2471 (2019). https://doi-org.libproxy.viko.lt/10.1016/j.jeurceramsoc.2019.02.032

    CrossRef  Google Scholar 

  19. Travitzky, N.: Additive manufacturing of ceramic-based materials. Adv. Eng. Mater. 16(6), 729–754 (2014). https://doi-org.libproxy.viko.lt/10.1002/adem.201400097

  20. Umfrage: 3D-Drucker zieht ein in deutsche Privathaushalte: reichelt.de. https://www.reichelt.de/magazin/studien/umfrage-3d-drucker/. Accessed 28 Jan 2020

  21. Rundle, G.: A Revolution in the Making. Affirm Press, Melbourne (2014)

    Google Scholar 

  22. Lengauer, W.: Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet components. Int. J. Refract. Met. Hard Mater 82, 141–149 (2019). https://doi-org.libproxy.viko.lt/10.1016/j.ijrmhm.2019.04.011

  23. Manikandan, K., Wi, K., Zhang, X., Wang, K., Qin, H.: Characterizing cement mixtures for concrete 3D printing. Manuf. Lett. 24, 33–37 (2020). https://doi-org.libproxy.viko.lt/10.1016/j.mfglet.2020.03.002

    CrossRef  Google Scholar 

  24. Larano, M.: 3D printing complex chocolate objects: platform design, optimization and evaluation. J. Food Eng. 215, 13–22 (2017). https://doi-org.libproxy.viko.lt/10.1016/j.jfoodeng.2017.06.029

  25. Lee, C.Y., Liu, C.Y.: The influence of forced-air cooling on a 3D printed part manufactured by fused filament fabrication. Addit. Manuf. 25, 196–203 (2019). https://doi-org.libproxy.viko.lt/10.1016/j.addma.2018.11.012

    CrossRef  Google Scholar 

  26. Bose, S.: Additive manufacturing of ceramics. Addit. Manuf. (2015). https://www.taylorfrancis.com/. Accessed 19 Dec 2019

  27. Cesarano, J.: A review of robocasting technology. MRS Proc. 542, 133 (1998). https://doi-org.libproxy.viko.lt/10.1557/proc-542-133

  28. Bellini, A., Shor, L., Guceri, S.I.: New developments in fused deposition modeling of ceramics. Rapid Prototyp. J. 11(4), 214–220 (2005). https://doi-org.libproxy.viko.lt/10.1108/13552540510612901

    CrossRef  Google Scholar 

  29. Bengisu, M.: Engineering Ceramics. Springer Science & Business Media (2013)

    Google Scholar 

  30. Hornbogen, E., Eggeler, G., Werner, E.: Werkstoffe: Aufbau und Eigenschaften von Keramik-, Metall-, Polymer- und Verbundwerkstoffen. Springer, Heidelberg (2019)

    CrossRef  Google Scholar 

  31. Spoerk, M., Gonzalez-Gutierrez, J., Sapkota, J., Schuschnigg, S., Holzer, C.: Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabrication. Plast. Rubber Compos. 47(1), 17–24 (2018). https://doi-org.libproxy.viko.lt/10.1080/14658011.2017.1399531

    CrossRef  Google Scholar 

  32. Lewis, J.A., Smay, J.E., Stuecker, J., Cesarano, J.: Direct ink writing of three-dimensional ceramic structures. J. Am. Ceram. Soc. 89(12), 3599–3609 (2006). https://doi-org.libproxy.viko.lt/10.1111/j.1551-2916.2006.01382.x

    CrossRef  Google Scholar 

  33. Bellini, A.: Fused deposition of ceramics: a comprehensive experimental, analytical and computational study of material behavior, fabrication process and equipment design. ProQuest Information and Learning Company (2002)

    Google Scholar 

  34. Rahaman, M., Rahaman, M.N.: Ceramic Processing. CRC Press,  Boca Raton (2006)

    Google Scholar 

  35. Peterson, A.M.: Review of acrylonitrile butadiene styrene in fused filament fabrication: a plastics engineering-focused perspective. Addit. Manuf. 27, 363–371 (2019). https://doi-org.libproxy.viko.lt/10.1016/j.addma.2019.03.030

    CrossRef  Google Scholar 

  36. Todd, I., Sidambe, A.T.: Developments in metal injection moulding (MIM). Adv. Powder Metall, 109–146 (2013), https://doi-org.libproxy.viko.lt/10.1533/9780857098900.1.109

  37. Onagoruwa, S., Bose, S., Bandyopadhyay, A.: Fused Deposition of Ceramics (FDC) and Composites. Int. Solid Free. Fabr. Symp., p. 8 (2001). http://dx.doi.org.libproxy.viko.lt/10.26153/tsw/3267

  38. Balani, S.B., Chabert, F., Nassiet, V., Cantarel, A.: Influence of printing parameters on the stability of deposited beads in fused filament fabrication of poly(lactic) acid. Addit. Manuf. 25, 112–121 (2019). https://doi-org.libproxy.viko.lt/10.1016/j.addma.2018.10.012

    CrossRef  Google Scholar 

  39. Rangarajan, S.: The Role of Materials Processing Variables in the FDC Process

    Google Scholar 

  40. Danforth, S.: Fused deposition of ceramics: a new technique for the rapid fabrication of ceramic components. Mater. Technol. 10(7–8), 144–146 (1995). https://doi-org.libproxy.viko.lt/10.1080/10667857.1995.11752614

    CrossRef  Google Scholar 

  41. ZetaMix Filament: ZetaMix. http://zetamix.fr/en/filaments/31-79-zetamix-filament.html. Accessed 26 Apr 2020

  42. ZetaMix Filament: ZetaMix. http://zetamix.fr/en/filaments/31-81-zetamix-filament.html. Accessed 26 Apr 2020

  43. ZetaMix Filament: ZetaMix. http://zetamix.fr/en/filaments/31-85-zetamix-filament.html. Accessed 26 Apr 2020

  44. Zirconium Silicate (Zircopax®) Ceramic FilametTM: The Virtual Foundry. https://shop.thevirtualfoundry.com/products/zirconium-silicate-filamet-1. Accessed 26 Apr 2020

  45. Suárez, G., Acevedo, S., Rendtorff, N.M., Garrido, L.B., Aglietti, E.F.: Colloidal processing, sintering and mechanical properties of zircon (ZrSiO4). Ceram. Int. 41(1), 1015–1021 (2015). https://doi-org.libproxy.viko.lt/10.1016/j.ceramint.2014.09.024

    CrossRef  Google Scholar 

  46. 3D filament 1,75 mm Ceramic Keramik 1000 g 1 kg: printmania.at. https://printmania.at/spezialmaterialien/3500-3d-filament-175-mm-ceramic-keramik-1000g.html. Accessed 26 Apr 2020

  47. LAYCeramic Ceramic Filament - 2.85 mm (1 kg): MatterHackers. https://www.matterhackers.com/store/l/layceramic-ceramic-filament-285mm-1kg/sk/M7RE5J6P. Accessed 26 Apr 2020

  48. China keramik filament hohe qualität 3d drucker filament (1 kg): aliexpress.com. https://de.aliexpress.com/item/4000890880279.html?src=ibdm_d03p0558e02r02&sk=&aff_platform=&aff_trace_key=&af=&cv=&cn=&dp. Accessed 26 Apr 2020

  49. Lay-Brick (Ceramic): Filament2Print. https://filament2print.com/gb/wood-ceramic/587-lay-brick.html. Accessed 26 Apr 2020

  50. Amaco X-23 Ceramic Clay FilametTM: The Virtual Foundry. https://shop.thevirtualfoundry.com/products/amaco-x-23-ceramic-clay-filamet. Accessed 26 Apr 2020

  51. Amaco 46-D Ceramic Clay FilametTM: The Virtual Foundry. https://shop.thevirtualfoundry.com/products/amaco-46-d-ceramic-clay-filamet. Accessed 26 Apr 2020

  52. Amaco White 25-D Ceramic Clay FilametTM: The Virtual Foundry. https://shop.thevirtualfoundry.com/products/amaco-white-25-d-ceramic-clay-filamet. Accessed 26 Apr 2020

  53. Markforged Keramik Stützmaterial – 200 cm3 Rolle: Mark3D. https://www.mark3d.com/de/produkt/markforged-stuetzmaterial-keramik/. Accessed 26 Apr 2020

  54. Werkstoffe – Additive Fertigung für besondere Ansprüche: 3d-figo. https://3d-figo.de/werkstoffe/. Accessed 01 May 2020

  55. Keramik - Verdrucken Sie CIM-Keramiken mit AIM3D: AIM3D. https://www.aim3d.de/materialien/keramik/. Accessed 01 May 2020

  56. 3d-figo FFD 150H review - professional ceramic 3D printer: Aniwaa. https://www.aniwaa.com/product/3d-printers/3d-figo-ffd-150h/. Accessed 01 May 2020

  57. AIM3D ExAM 255 review - industrial 3D printer (pellet extruder): Aniwaa. https://www.aniwaa.com/product/3d-printers/aim3d-exam-255/. Accessed 01 May 2020

  58. ExOne Innovent review - industrial 3D printer (sand, metal, and ceramics). Aniwaa. https://www.aniwaa.com/product/3d-printers/exone-innovent/. Accessed 01 May 2020

  59. Kwambio Ceramo One review - ceramic additive manufacturing system. Aniwaa. https://www.aniwaa.com/product/3d-printers/kwambio-ceramo-one/. Accessed 01 May 2020

  60. Voxeljet VX4000 review - industrial 3D printer (large build volume). Aniwaa. https://www.aniwaa.com/product/3d-printers/voxeljet-vx4000/. Accessed 01 May 2020

  61. 3D Systems ProX DMP 200 Dental review - professional 3D printer: Aniwaa. https://www.aniwaa.com/product/3d-printers/3d-systems-prox-200-dental/. Accessed 01 May 2020

  62. Lithoz CeraFab 7500 review - industrial ceramic 3D printer: Aniwaa. https://www.aniwaa.com/product/3d-printers/lithoz-cerafab-7500/. Accessed 01 May 2020

  63. 3DCeram Ceramaker review - industrial ceramic 3D printer: Aniwaa. https://www.aniwaa.com/product/3d-printers/3dceram-ceramaker/. Accessed 01 May 2020

  64. Admatec ADMAFLEX 130 review - industrial ceramic 3D printer (DLP):, Aniwaa. https://www.aniwaa.com/product/3d-printers/admatec-admaflex-130/. Accessed 01 May 2020

  65. Prodways ProMaker V6000 review - industrial ceramic 3D printer: Aniwaa. https://www.aniwaa.com/product/3d-printers/prodways-promaker-v6000/. Accessed 01 May 2020

  66. Informationen zum PLA Filament: material4print. https://www.material4print.de/de/infos-zum-filament-pla__138/. Accessed 03 May 2020

  67. Kaiser, A., Lobert, M., Telle, R.: Thermal stability of zircon (ZrSiO4). J. Eur. Ceram. Soc. 28(11), 2199–2211 (2008). https://doi-org.libproxy.viko.lt/10.1016/j.jeurceramsoc.2007.12.040

    CrossRef  Google Scholar 

  68. Bauer, J., Durakbasa, N.: Application of multi-technology in the manufacture of parts by 3d printing, ESIAM19, Trondheim, Norway, 9–11 September 2019

    Google Scholar 

  69. Gonzalez-Gutierrez, J., Treitler, M., Spoerk, M., Arbeiter, F., Schuschnigg, S., Lammer, H., Lackner, M., Aburaia, M., Poszvek, G., Zhang, H., Sapkota, J., Holzer, C.: Carbon fiber reinforced thermoplastics for material extrusion additive manufacturing. In: Conference Proceedings of 35th International Conference of the Polymer Processing Society (2019)

    Google Scholar 

  70. Aburaia, M., Lackner, M., Grünbichler, H., Engelhardt-Nowitzki, C., Markl, E., Lammer, H., Haiguang, Z., Wang, J., Sapotka, J., Janics, T., Hailberger, M.: Freeform-FDM process development using natural fibre reinforced biopolymers. In: 2nd International Conference on 3D Printing Technology and Innovation March 19–20, London, UK (2018)

    Google Scholar 

  71. Hage 3D. http://hage3d.com/index.php/hage3d-3ddrucker-84l/. Accessed 24 Aug 2020

  72. HotEndWorks. https://www.aniwaa.com/product/3d-printers/hotend-works-hdfab-advanced-material-3d-printer/. Accessed 24 Aug 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Poszvek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Poszvek, G. et al. (2021). Fused Filament Fabrication of Ceramic Components for Home Use. In: Durakbasa, N.M., Gençyılmaz, M.G. (eds) Digital Conversion on the Way to Industry 4.0. ISPR 2020. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi-org.libproxy.viko.lt/10.1007/978-3-030-62784-3_11

Download citation

  • DOI: https://doi-org.libproxy.viko.lt/10.1007/978-3-030-62784-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62783-6

  • Online ISBN: 978-3-030-62784-3

  • eBook Packages: EngineeringEngineering (R0)